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THE SOFTWARE SECURITY PROBLEM AND HOW TO SOLVE IT

So if a man's w.it be wandering,
let him study the mathematics

-Francis Bacon

* I. SECURITY AND RELIABILITY

When digi -tal computers first began being used in t 'he 1950's,

people just programmned their computers in machine or assembly

language and ran their programs. With the introduction of

higher-order languages, however, and particularly with the

development of large and very large software systems, such ~as

those of the Apollo project, for example, a whole new set of

9 questions and problems arose that the early programmers could

never have imagined. How can we prevent timing conflicts?

How can we prevent data conflicts? How can we prove programs

correct? What is the relation between synchronous and asynch-

9 ronous processing? How can we make an operating system secure?

All of these questions and others constitute what Parnas [Par72aI

has termed "the so-called 'software engineering' problem"

(p. 330).

One of the most interesting instances of this software-engineering
problem is that of guaranteeing system security. Hiow can access

to the various components of a system be restricted specifically to

those for whom it is intended? Linden (Lind76] points out that

there are many similarities between the requirements of security

and the requirements of reliability, suggesting that "a tech-

nical breakthrough on both the security and software reliability

problems appears to be as feasible as a breakthrough on the

security problem alone" (p. 410). Guaranteeing security re-

quires that "operating systems must be structured so that inter-

actions between system modules are more clearly defined and more

closely controlled" (p. 411), but "this same control over the

interaction of modules is also needed for reliability."
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Similarly, "the protection mechanisms needed for security can

also be used to enforce software modularity," and "such modularity

would improve the reliability and correctness of software."

In a word, "there is enough overlap between the requirements
for security and the requirements for high system availability

that it is reasonable to attempt to solve both problems at the

same time." (Availability is a necessary part of reliability,

for Linden.)

In this report we will argue that Linden is correct, by showing

that software specified according to the Higher Order Software

(HOS) methodology of Hamilton and Zeldin [Ham76a,b,77] is auto-
matically secure. HOS was developed as a means of guaranteeing

system reliability, without any concern for the security problem

per se. Systems specified in HOS are guaranteed against ever
having timing or data conflicts [Ham76b]. The fact that they also
turn out to be secure makes HOS exactly the kind of common break-

through that Linden suggests is feasible.

HOS manages to solve these two problems by showing that they

need not arise in the first place. If software is specified
according to the principles of HOS, then there is no need to
ask how to prevent data or timing conflicts, because there simply
will be no such thing. Similarly, ignoring history for the

moment, if software had always been specified according to HOS,

then it would never have occurred to anyone to ask how to make
a software system secure, because it simply would have been

secure already. Demonstrating this latter point is the purpose

of our present paper.

Many people have recognized that the key to solving these problems
is to make a clean separation between the specification of a

system and its implementation, and, as we will see, HOS is a

systems theory that really manages to do this successfully.
We will see that trying to solve the reliability, security,

and related problems entirely in terms of implementation is like
trying to get to the moon on a skateboard. Some systems theories

2
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enable us to get off the ground, but then we are stranded for-

ever in the.orbit of implementation. HOS enables us, finally,

t to achieve escape velocity, break free of this orbit, and reach

whatever destination we have decided on.

3
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2. THE SECURITY PROBLEM 

Linden [Lind76] presents a general abstract characterization of 

system securi c:.'-1 ir• terTT'.s of what he calls a protection model. 

Such a model "views the computer as a set of active entities 

called subjects and a set of passive entities called objects. 

The protectj_on model defjnes the access rights of each subject 

to each object" (p. 415). 

Linden represents a protection·model in the form of a protection 

rnatdx, such as the one in Figure 1 [Lind76, p.416]. The rows of 

a protection matrix are associated with the subjects of the 

model and its columns are associated with the objects. "For 

each subject/object pair, the corresponding entry in the matrix 

defines the set of access rights that the subject has to the 

object." For the protection model represented by the protection 

matrix in Figure 1, for example, we see that subject C may 

read or execute object X, because both "READ" and "EXECUTE" appear 

in the matrix slot that occurs at the intersection of rm1 C 

and column X. 

Changes to the protection matrix itself are also controlled 

by the access rights represented in the matrix; "for example, 

a subject with 'delete' access to an object cun eliminate that 

object :!:rom the protection matrix." Subjects can be allowed to 

have access rights to each other by having s~bjects appear 

also as oLjects in the protection ma~rix. "Fo~ example, one 

subje.ct nay be allowed to transfer control to another subject 

by using an 'enter' access right to the other subject." 

Linden also introduces the notion of d protection environment, 

which includes "everything that a subject might cause to be done 

on its bRhalf by another subject," as well as everything the 

subject is allowed to do directly. "A protection domain is 

a more restricted ~oncept and includes only access rights to 

objects that are accessible by the su.oject." The rows of the 

PRECEDING PAGE BLANK 
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protection matrix represent the protection domains of the pro-

tection model.

The key to Linden's approach to system security is the notion

of small protection domains. Linden uses the term "small pro-

tection domains" as "a qualitative description of a certain

class of protection models. The word 'small' is not intended

in a rigid quantitative sense" (p. 416). A small protection

domain, for Linden, is the minimal protection domain that will

still allow its subject access to everything it has to access.

A protection domain may be very large in a quantitative sense,

but it is a "small" protection domain if it could not be decreased

in size without overly restricting the access rights of its

subject. Linden calls this the "principle of least privilege."

Since "a large program usually needs access to many objects,"

it follows that"protection domains can be kept small only if

a large program executes in many different protection domains

and constantly switches between these protection domains during

its execution." Protection domains can be kept small, "if

small subunits of a program execute in their own protection

domains," because "a small subunit of a program typically only

needs access to a small number of objects." It follows that

"the flexibility, ease, and efficiency of domain switching

is the primary factor in determining whether protection domains

can be kept small and closely tailored to actual needs."

Linden integrates protection domain switching with the calling

of a procedure. This permits each procedure to have its own

protection domain, even though a domain swit-ch might not be

involved in every procedure. A protected procedure, for Linden,

is a procedure that does involve a domain switch.

If a procedure is a protected procedure, then it will have a

particular protection domain associated with it. "Thus the

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 (61-)1661*8900



right to access certain objects may be available during the

execution of that procedure--and possibly only during executions

of that procedure." Each execution of a protected procedure

will possess the access rights of the procedure, whatever the

calling environment may be. The procedure itself, moreover,
"can have a state which is preserved between calls to the pro-

cedure--and that state is independent of the calling environ-

ments."

Linden points out that a protected procedure will appear both

as a subject and as an object, when represented in a protection

matrix. A protected procedure is an object because there may

be other subjects that have the right to call it. This right

is represented in a protection matrix by the appearance of a

special access right, such as the "enter" access right referred

to earlier. A protected procedure also occurs as a subject

in a protection matrix because, naturally, "it executes in

its own protection domain."

Switching protection domains involves calling a protected pro-

cedure. The simplest case of domain switching is the one in

which no access rights are passed as parameters in the call.

The call takes place and-execution begins in the protection

domain of the called procedure, as long, of course, as the

caller has the right to call this procedure in the first place.

Return to the previous protection domain, i.e., the protection

domain of the caller, is triggered by a return instruction in

the executing called procedure.

This situation is illustrated in the protection matrix in

Figure 2 [Lind76, P.411. User A can call the editor, while

executing in his own protection domain. He can also read or

write files X and Y either from his own domain or by callinC

the editor, which is also allowed to read or write files X

and Y. The user can use the dictionary, however, only by

calling the editor, because the editor, but not the user him-

self, is allowed to read the dictionary.

I
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A domain switch is more complex if it involves the passing of

access rights to objects as parameters "and if the protected

procedure is to be reentrant." This kind of call to a protected

procedure creates a new protection domain, i.e., a new row in

the protection matrix. "The new protection domain contains

both the permanent access rights of the protected procedure,"
defined by a template domain associated with the procedure,
"and the access rights that are passed as parameters in the

call."

This kind of situation is illustrated in Figure 3 (Lind76, p.411].

Figure 3a shows the User A's own basic domain and the template

domain of the editor. User A has the same access rights as

he has in Figure 2, but the editor is allowed only READ access

to the dictionary. It cannot read or write files X or Y, as

it can in Figure 2. If the user wants to use the editor to

read file X, however, he can pass access rights for file X

to the editor in the process of calling the editor. This re-

sults in the creation of a new protection domain, labeled

"INSTANCE OF EDITOR" in Figure 3b, in which the editor does

have READ access to file X. Linden notes that "other users
may be editing other files using other instances of the same

editor."

K. G. Walter [Walt75] presents what is, in effect I , a for-

malization of Linden's account of security in the form of a

model for mandatory security. Walter designs his model to

satisfy the "design requirements... that there be no unauthorized

disclosure of information and that, otherwise, unrestricted

sharing of information be allowed." The model is based on

the idea of restricting access to information by giving a

specific classification for each piece of information and re-

quiring a user to have the proper clearance in order to access

the information.
1Calling Walter's characterization of security a formalization
of Linden's is probably historically inaccurate, since Walter's
account appeared a year and a half earlier than Linden's.
This is the logical relation between the two theories, however,
as we show in the text.

10
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EDITOR FILE X FILE Y DICTIONARY

USER A ENTER READ READ
WRITE WRITE

EDITOR READ

TEMPLATE

Figure 3a: Protection Matrix before Call to Editor

subjects EDITOR FILE X FILE Y DICTIONARY

USER A ENTER READ READ

WRITE WRITE

EDITOR READ
TEMPLATE

INSTANCE READ READ
OF EDITOR WRITE

Figure 3b: Protection Matrix during Call to Editor

11
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to access the information.

Formally, Walter describes his model as an 8-tuple

M = (R, A, C, 0, v, 4, Cls, Clr)

where

R is a set of repositories.

A is a set of agents.

C is a set of security classes.

OCA x R is the "observe" relation.
(a 0 r means that agent a can
observe the information stored in
repository r.)

1jCA x R is the "modify" relation.
(a P r means that agent a can
modify the information stored in
respository r.)

.CC x C is a pre-ordering of the set of
security classes.

CLS: R - C is the "classification" function
which associates a security class
with-each repository. (Informally
Cls(r) will be referred to as the
classification of repository r.)

CLR: A C is the "clearance" function which
associates a security class with
each agent. (Here again Clr(a) will
be referred to as the clearance of
agent a.)

Walter's repositories correspond to Linden's objects, while

his agents correspond to Linden's subjects. The observe

and modify relations correspond to two general kinds of

access right that can occur in a protection matrix. The

security classes in M0 correspond to Linden's small pro-

tection domains; it is they that determine which repositories

12
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(objects) an agent (subject) can observe or modify (access).

There is nothing in Walter's model that guarantees a null

intersection of the classes of agents and repositories, so,

* as with Linden, it is quite possible for some (or all) of the

entities involved to be both subjects and objects.

Walter imposes four axioms on his 8-tuple M0 in order to prove

his basic security theorem. The first two axioms state

explicitly that the relation 4 provides a pre-ordering of

the set C of security classes.

Axiom 1: For all c c C, c 4 c.
(4 is reflexive.)

Axiom 2: For all c, d, e e C, c 4 d and d 4 e
implies c 4 e. (4 is transitive.)

"The second two axioms govern, respectively, the acquisition

and dissemination of information."

Axiom 3: For all a e A and r E R, a 0 r implies
Cls(r) 4 Clr(a).

That is, if agent a can observe repository r,
then the clearance of a must be greater than
or equal to the classification of r).

Axiom 4: For all a c A and r c R, a v r implies Clr(a) 4
Cls(r).

That is, if an agent a can modify repository r,
then the clearance of a is less than or equal
to the classification of r. Agent a can modify
only those repositories with equal or higher
security class.)

Walter says that "for making comparisons it is sufficient to

assume that the set of security classes is pre-ordered," (p. 286)

but his earlier statement that "the classification system has

a lattice structure" (p. 286), suggests that he really wants a

partial ordering, since it is partial orderings that induce

lattice structures. Formally, we include a third ordering

13
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axiom to the effect that something cannot be both higher and
lower in the ordering than something else, as follows:

For all c, d E C, c 4 d and d 4 c
implies c = d.

The basic security theorem states that "no information

can ever be transferred to a repository in which it can be

observed by an agent that does not have sufficient clearance

to observe the source repository." Proving this theorem
requires the introduction of a "transfer" relation T C R x R,

meaning that there is an agent that can transfer information

from the first member of R to the second in a particular

member of T. Formally, we say that r T s for r E R, s e R,
if and only if there is an a E A such that a 0 r and a v s.

The basic security theorem itself requires the reflexive,

transitive closure T* of T and the notion of information

transfer path. The relation r T* s means that "there is

a finite sequence of repositories {1 } such that r = r1'
= Kn+l' and ri T ri+l for all i, 1 < i < n." In other

words, r T* s if and only if information can eventually be
passed from r to s. We-say that "there is an information

transfer path from repository E to repository s," if it is,

in fact, the case that r T* S.

Walter's basic security theorem can be stated formally in

either of two ways, as follows:

Theorem: For all r, s c R, if r r* s, then Cls(r)
4 Cls(s). In other words, if there is an
information transfer path from repository
r to repository s then Cls(r) 4 Cls(s).

Corollary: If r and s are repositories and the classifi-
cation of-r is not less than or equal to
the classification of s, then there is no
information transfer path from r to s.

14
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What this theorem says is that if information flows from one

repository to another, then the latter has a security class

that is the same as or higher than the former; in other words,

information can flow only upwards. Guaranteeing that, in a nut-

shell, is what the security problem is all about.

is:I:

15
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3. SPECIFICATION, IMPLEMENTATION, AND LEVELS OF ABSTRACTION

Walter does not stop with 110 1 but also oresents two other models,

M.which is outlined in Figure 4, and M 2 F which is too compli-

cated simply to exhibit in a figure without further explanation.

Walter describes the relationship that is supposed to exist

between successive models in the sequence MO.- Mil M 2 in terms

of a "technique of structured modeling" (p. 288) , in which

successive "levels of modeling" are used to arrive at the full

description of a system. He also uses the term "Structured

Specification" (p. 285) to denote the approach to specification

that results in models that are related in this way. ModelM
"will satisfy the security requirements in Mo plus further de-

sign requirements... These additional restrictions make the

design more implementation specific" (p. 288) by representing

the security system as "a file system structured as in a tree

of arbitrary depth" and by providing "a mechanism for inter-

agent communication which does not require accessing a shared

file" (p. 290).

Mis a still "more specific security system model" (p. 290)

involving 'mechanisms which will be used as discretionary

controls for access to files.' Walter says that the defini-

tion of Mo "has intuitive appeal, however, the way to apply

Mto a complex operating system is far from obvious" (p. 293).

As for Mi, "though still fairly general, this model is ap-

propriate for a small class of machines. The next model, M2
is applicable to few systems besides Multics," i.e., is getting

very close to a description of (part of) an actual operating

system, as implemented. "Eventually, some model (probably

an M 3 or M 4) will closely resemble commands in the Multics

System."

A general framework for understanding what Walter is trying

to do is provided by the SRI systems model described by

17
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M= (F,M,A,CpF aF,PM,GM,4,6,Cls,Clr)

WHERE:

F is a tree of files

M is a set of mailboxes

A is a set of agents

C is a set of security classes

PF C A x F is the "retrieve information" relation.
(a pF f means that agent a can retrieve in-

formation from file f.)

aF C A x F is the "store information" relation.(a aF f means that a can store information in f.)

PM C A x M is the "receive" relation.
(a pM m means that agent a can receive infor-

mation through mailbox m.)

aM C A x M is the "send" relation.
(a aM m means that a can send information to m.)

4 C C x C is a pre-ordering of the set of security class.

6 C F x F is the "dominate" relation on the set of files.
(It defines the "tree" structure on the files.)

CIs: FUM C is the "classification" function for files
and mailboxes

Clr: A - C is the "clearance" function for agents.

AXIOMS FOR M

Al.l: For all c c C, c 4 c
(4 is reflexive).

A1.2: For all c, d, e c C, c 4 d and d 4 e implies c 4e
(4 is transitive).

A1.3: For all a c A and f e F, a pF f implies Clr(f) 4 Clr(a).

(An agent can only "retrieve" information from a file
with ecual or lower classification).

Figure 4: Walter's "Tree Structured Directory Model - MI

18
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Al.4: For all a E A and m E M, a p m implies Cls(m) = Clr(a).

(An agent can only "receive" information through a mail-
box with classification equal to its own clearance).

A1.5: For all a e A and f E F, a aF f implies Clr(a) 4 Cls(f).

(An agent can only "store" information in a file with
equal or greater classification).

A1.6: For all a e A and m c M, a ar m implies Clr(a) 4 Cls(m).

(An agent can only "send" information through a mailbox
with equal or greater classification).

A1.7: For all f c F, f 6 f (6 is reflexive).

A1.8: For all f, g c F, f 6 g and g 6 f implies f = g.
(6 is antisymmetric).

A1.9: For all f, g, h e F, f 6 g and g 6 h implies f 6 h.
(6 is transitive).

A1.10: For all f, g, h E F, g 6 f and h 6 f implies g 6 h
or h 6 f (sic).
(6 has the "tree" property).

A1.11: For all a e A, and f, g e F, a pF g and f 6 g implies

a pF f  (In order to retrieve information from a file,

an agent must be able to retrieve from (i.e. search)
every file which dominates it).

A1.12: For all a e A, and f, g E F, a aF g and f 6 g and f 3 g

implies a pF f . (In order to store into a file, an

agent must be able to retrieve from or search every file
which strictly dominates it. This specifically allows
an agent to store in a file from which it cannot re-
trieve; i.e., write-up is permitted.)

A1.13: For all a c A, and f, g e F, a aF f and f 6 g implies

a aF g. (Since it is expected that attributes of a file

will be maintained in a dominating file (directory), if
an agent can store into a directory file and thus change
attributes of an inferior file, then the agent must also
be able to store into (modify) the inferior file).

A1.14: For all f c F, there exists an a e A such that a cF f.

(There are no files which cannot be stored into (modified)
by at least one agent).

Figure 4: Walter' "Tree Structured Directcry Model - M
(con' t)
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Robinson [Robi75], [Robi77].2 Robinson characterizes a sys-

tem description in terms of "a sequence of ordered pairs

{(P0' M0), (PI' Mi)'''" (Pn' Mn)). called a hierarchically

structured program" (p. 272) in which P. is a cet of abstract1
programs that run on the abstract machine Mi. He notes that,

in general, the pairs will occur in a tree structure, and that

he assumes a linear ordering only in order to simplify the

argument.

Each program runs on a machine, but since the
collection of machines forms a hierarchy, the
primitive operations of a machine at some level
are realized by a set of programs running on
a machine at the next lower level (one program
corresponding to each operation of the machine)
(p. 272).

"The programs abstract from the implementation details of

machines on which they run" and "the only information avail-

able to a program is the external behavior of the machine."

The general idea of this structuring is illustrated in Figure 5,

in which "M0 is the most primitive machine and can be viewed

as the instruction set for a hardware machine or as a higher-

order language" and in which "P is the abstract program atn
the highest level, running on machine Mn ." The direction of

the arrows in the diagram represent the flow of implementa-

tion,in the sense that,"for all values of i(0 < i < n), the

set of abstract programs P. running on the abstract machine1

Mi implements the abstract machine Mi+l," while itself run-

ning on abstract machine Mi . "The system as a whole is

equivalent to some program P running on a machine M, where

M = M0 and P is an abstraction of P."

Each of the abstract machines in Robinson's framework "can

be described as a module of Parnas...in which both the in-

ternal state and the transformation rules are characterized

2The model description in [Robi75] differs somewhat from that
of [Robi77]. We will quote the latter, unless otherwise
noted.
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as functions of two types - V-functions (Value functions) and

O-functions (Operation functions)." Each "program running on

an abstract machine can be expressed as a sequence of calls

to the functions that make up an abstract machine." A V-func-

tion is one that "returns a value when called; the set of

possible V-function values of the module defines the state

space (or abstract data structure) of the module." A module's

state is denoted by a particular set of values for each V-

function. O-functions describe state transformations by de-

fining new values for V-functions. "A state transformation

occurs when an O-function is called and is described as an

assertion relating new values of V-functions to their values

before the call*." Such an assertion "is a predicate con-

taining V-functions for which the predicate is true." It
"specifies that, as a result of a call, the new state is one

of some set of possible states; therefore the specification

may be incomplete." The effect of this feature is that it
"postpones binding of certain decisions until the abstract

program is implemented or even until run-time." An example

of an abstract machine characterized as a Parnas module

specification is given in Figure 6 [Robi77, p.273 .

Except for its reversed numbering scheme, it seems reasonably

clear that the SRI framework we have just outlined corresponds

more than roughly, in intent, to Walter's "technique of

structured modeling" or "Structured Specification." Whereas

Walter denotes his most abstract "level of modelinj" by the

number 0, with increasing numbers as we get closer to imple-

mentation, Robinson uses 0 to denote his least abstract "level

of abstraction," with numbers increasing as we get further

away from that level. The basic idea behind the separation

of levels, however, is pretty much the same in both frame-

works.
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integer V-function: LENGTH

Comment: Returns the number of occupied positions in the
register.

Initial value: LENGTH = 0
Exceptions: none

Integer V-function: CHAR(integer i)

Comment: Returns the value of the ith element of the
register.

Initial value: Vi(CHAR(i) = undefined)
Exceptions: IOUT OF BOUNDS: i < 0 , i > LENGTH

O-function: INSERT(integer, i,j)

Comment: Inserts the value j after position i, moving
subsequent values one position higher.

Exceptions:

IOUTOF BOUNDS: i < 0 V i > LENGTH

JOUTOFBOUNDS: j < 0 V j > 255

TOOLONG: LENGTH > 1000

Effects: LENGTH = 'LENGTH' + 1

Vk(CHAR(k) = if k < i then 'CHAR' (k)

else if k = i + 1 then j

else 'CHAR'(k-l))

0-function: DELETE(integer i)

Comment: Deletes the ith element of the register,
moving the subsequent values to fill in the gap.

Exceptions: IOUTOFBOUNDS: i < 0 V i > LENGTH

Effects:

LENGTH = 'LENGTH' - 1

Vk(CHAR(k) = if k < i then 'CHAR' (k)

else 'CHAR' (k + 1))

Figure 6

Robinson's Register Module Specification

* 23

HIGHFR ORI'FR SOFTWARF INC • R41 MA'SArHIISFTT4 AVFNIIF • CAMRRIr)CF MASSA"HIISFTTS w91"q . (6171 Rjl.go0



Walter describes the idea behind his methodology as follows:

In many ways, Structured Specification is similar
to Structured Programming; "levels of specification"
are analogous to the "levels of abstraction" dis-
cussed in Structured Programming. However, in some
sense, these concepts are orthogonal to each other.
Structured Programming is a technique for evolving
an orderly description of how a particular problem
will be solved. Typically, it is a matter of filling
in the "nitty-gritty" details of an algorithm, which
is well understood.

Conversely, Structured Specification concentrates
on evolving an orderly description of precisely
what problem is to be solved. In addition, the
various levels of specification provide a forum for
discussing wh the program is being designed in a
particular way. (p. 285).

Differences in terminology aside (for example, Robinson's

"levels of abstraction" would seem to be intended to cor-

respond to Walter's "levels of specification," as well, per-
naps, as to the "levels of abstraction" of structured program-

ming), the aim of Robinson's methodology is the same.

Robinson,like Walter, is concerned with specification, not

with implementation, except as an ultimate aim. Systems must

eventually be implemented, of course, but this is not the

point. He describes his methodology as one which "formally

represents a program in terms of levels of abstraction, each

level of which can be described by a self-contained non-

procedural specification." (p. 271). The point is that a

program is intended to be characterized in terms of what it

is supposed to do (non-procedural), rather than in terms of

how (procedural) it is supposed to do it, exactly is Walter
says.
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Robinson's characterization of a level of abstraction in

terms of abstract machines is not a problem, because this

involves only a choice of conceptualization and does not

necessarily 'have to affect the formal methodology in an ad-

verse way. A problem is created by the use of abstract pro-

grams, however, in the actual characterization of the ab-

stract machines. A program is, by definition, a sequence

of instructions, and so is intrinsically procedural. Indeed,

Robinson characterizes "a program running on an abstract

machine.. .as a sequence of calls to the functions that make

up an abstract machine" (p. 272), as we have seen.. As long

as a systems framework uses abstract programs to characterize

the functions of his primitive machines, we are automatically

dealing with the how of those functions, rather than the what,

i.e., with their implementation, rather than their specifi-

cation.

We should note Robinson's assertion that "the Parnas speci-

fication language expresses state transformations in a non-

procedural way... A Parnas module specification is a self-

contained medium for defining an abstraction: V-functions

are primitive, and 0-functions are described solely in terms

of V-functions and the constructs of the assertion language."

What he means, presumably, is that, since the O-functions

can be reduced to ("described solely in terms of") the V-

functions and since the V-functions are primitive, i.e., not

further reducible, there is nothing more that he has to do to

characterize the module. Those functions (0-) which can

be reduced have been reduced and those functions V-) which

have not been reduced need not be reduced, because they cannot

be reduced. That, after all, is the meaning of "primitive."

While it is true that the primitive elements of a system (any

kind of system) cannot (or need not) be further reduced

(decomposed, described, etc.) in terms of other elements of

the system, however, it by no means follows that there is no

need to characterize them at all.
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Consider a simple case from plane Euclidean geometry. In that

geometry, we can take the notions of point and line as primi-

tives and notions like rectangle, triangle, and vertex as

non-primitives that can be described in terms of the primi-

tives. Thus point and line correspond to Robinson's V-functions,

since he says these are primitive, while rectangle, triangle,

and vertex correspond to his 0-functions, since he says these

are not primitive, but "are described solely in terms of V-

functions." A rectangle or a triangle can be described

(roughly, to avoid getting too technical and missing the main

point) as a particular configuration of lines, and a vertex

can be described as a point that is the intersection of two

lines. Thus the non-primitives are described in terms of the

primitives, exactly as Robinson wants.

The story does not end here, however. While reduction of geo-

metric entities ends at the level of point and line (and per-

haps other primitives, which we are ignoring for simplicity),

point and line themselves are then characterized in terms of

each other, i.e., in terms of their mutual interaction, by

means of axioms. Something is a point or a line if and only

if it behaves in accord with the axioms. The axioms of a

geometry, in fact, are its most important part, because every-

thing else about the geometry follows from them, once the

appropriate definitions of non-primitive entities in terms

of primitive ones are stated.

What ;this means in Robinson's case is that it is not enough

simply to state that the V-functions are primitive and leave

it at that. Looking carefully at 'Figure 6, we see that the

only way that V-functions are characterized within the module

is in terms of informal comments, in English, that tell us

what the functions are supposed to do. The formalism, however,

places no constraints on what these functions can do, except for

giving them initial values and (perhaps) restricting their

domains. Literally, any function that has these initial
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values and these domains can serve as the LENGTH and CHAR

functions in the m~odule. Since this is too general for what

Robinson intends, he is forced to narrow down the candidate

functions for LENGTH and CHAR by characterizing them outside
of the module in terms of abstract programs, which do spell
out formally and, by definition, algorithmically the func-

tions that he wants. This step, however, ipso facto removes
us from the realm of specification and places us in that of

implementation. In the process, we lose "the major advantages

of Parnas specifications." namely, "that they abstract from
the algorithms of implementation and are self-contained" (p. 272).

We see that Parnas' modules do not really characterize their

functions completely, as they are supposed to. One of the

underlying reasons for this problem is that Parnas tries to

make his modules do too much. Parnas confuses the need to

decompose a system into subsystems with the need to char-

acterize in precise terms the kinds of objects the system

deals with, proposing that both needs can be oatisfied with his

single notion of module.

In many places, Parnas talks about "dividing the system into

modules " [Par72b, p. 1053] and "decomposing a system into

modules," so it is clear that modules are intended to be the
kind of thing into which systems are decomposed. With respect

to the STACK module in Figure 7, however, he tells us that
it is proposed as a definition of a kind of object:

We propose that the definition of a stack shown in
Example 1 should replace the usual pictures of imple-
mentations (e.g., the array with pointer or the linked
list implementations). All that you need to know about
a stack in order to use it is specified there. There
are countless possible implementations (including a large
number of sensible ones). The implementation should be
free to vary without changing the using programs. If
the using programs assume no more about a stack than is
stated above, that will be true. (p. 332)
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It follows from these facts that Parnas is decomposing systems

into kinds of objects, but this is not the sort of result he

really wants. It is this kind of inadequacy that leads Robinson

to try to augment the Parnas methodology with things like

abstract programs.
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Function PUSH(a)

possible values: none

integer: a

effect: call ERR1 if a > p2 V a < 0 V 'DEPTH' = pl

else [VAL = a; DEPTH = 'DEPTH" + 1;]

Function POP

possible values: none

parameters: none

effect: call ERR2 if 'DEPTH' = 0

the sequence "PUSH(a); POP" has no net effect if no error
calls occur.

Function VAL

possible values: integer initial; value undefined

parameters: none

effect: error call if 'DEPTH' = 0

Function DEPTH

possible values: integer; initial value 0

parameters: none

effect: none

pl and p2 are parameters. p1 is intended to represent the
maximum depth of the stack and p2 the maximum width or
maximum size for each item.

Figure 7

Parnas' Stack Module
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4. HOS AS A GENERAL SYSTEMS THEORY

Like Linden and Walter, HOS recognizes that there are essentially

two modes of existence in the world, that of being and that of

doing, and that everything generally manifests both modes at

once. A given thing can either be or do and, in general, will

both be and do at the same time. This dichotomy reflects the

related bifurcation between being and becoming. If there is

something that is doing, then there is something (perhaps the

same thing) that is being done to, and this latter thing is

therefore becoming. Again, in general, anything that is doing

is also being done to and so is itself becoming, as well as

being.

This enables us to understand the important relationship be-

tween constancy and change. If we remove the front element

from a queue, for example, we still have the same queue, with

one element removed, but we also have a different queue, i.e.,

the one that differs from the original one in exactly that

element. The queue can still be the same queue, even though

it has become a different queue, and we are free to choose

whichever of these aspects of the situation fits our needs

for any particular problem. We can also say the queue has

changed its state, stipulating that the queue itself has not

changed, but then it is the states that are being or becoming,

so the same dichotomy emerges again on a higher level of ab-

straction.

Linden expresses the distinction between being and doing in

terms of his distinction between objects and subjects, as

we have seen. Objects are things that are done to, i.e.,

they simply are, rather than do. Subjects, in contrast,

are things which do, and the objects are precisely the things

they do to. Walter expresses this dichotomy in terms of his

distinction between repositories and agents, as we have also
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seen. Agents are things which do, and repositories are things

which are and which therefore are done to by the agents. As

we have discussed, anything, in general, will both be and do,

so anything is both an agent and a repository and both a sub-

ject and an object, as Linden, and presumably Walter, would

agree.

While both Linden and Walter thus recognize this fundamental

dichotomy in any system, there are serious defects in their

formulations of this dichotomy. The probler with Linden's

formulation is that it is not formal. All he tells us is that
"a protection model views the computer as a set of active

entities called subjects and a set of passive entities called

objects" (p. 415), with no formal characterization of what

these subject/object things or their properties are supposed

to be. Such an omission is perfectly justifiable in the con-

text of the general survey sort of article in which it occurs,

but it must be corrected in a complete systems theory.

Walter's formulation is quite formal, but it falters in a

different respect. A fully general systems theory should be

capable of expression at the highest possible level of

generality. Like Linden's account it should state things

solely in terms of subjects and objects, i.e., things that

do and things that are, at this highest level of generality,

while permitting subcategorizations of these basic categories,

e.g., procedure, protection domains, etc., at lower levels

of generality; Walter's problem is that he conflates levels

by including something not at all on a par with agents and

repositories with respect to generalitv, i.e., security

classes, on the highest level of generality of his systems

theory. Again, within a sufficiently limited domain of in-

terest, Walter's decision to lump the highly specific notion

of security classes in with the completely ceneral notions of

agent and repository is excusable, but outside of such a domain,
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it will place unnecessary restrictions on any system specified

in accordance with the theory. A general systems theory

should allow the introduction of lower-level notions like

security classes, if they are needed, but it should not require

them on its most general level, where only agents and re-

positories should reside.

HOS expresses the distinction between being and doing in

terms of the familiar notions of data and function, and it

does this in a completely formal way. Anything that can be

can be represented as a member of a data type, and- anything
3that can do can be represented as a function . As we would

expect from a correct formulation, anything that can be, i.e.,

a datum, can also do, by serving as input to a functicn, and

anything that can do, i.e., a function, can also be, since

functions- themselves make up a data type.

For example, if datum x is mapped by functions fit f2' f3,

f4 ' f5 onto data yI, Y2 ' Y3' Y4' y5 , respectively, then x

itself can be viewed as a function that maps the data f 2

f3 ' f4 " f5 onto yI, y2 ' Y3 ' Y4' Y5" Functions themselves

can be data, in other words, and data can be functions,de-

pending on the requirements of the particular problem we are

working on. If FXY is the subset of data type FUNCTION whose

members map data type X into data type Y, then X is the sub-

set of FUNCTION that maps FXY into Y. Both interpretations

are correct, in general, and which one we choose depends on

what we need for a specific problem.

In our formulation, however, unlike Linden's, this revers-

ability follows naturally from the nature of data and functions.

We do not really have to say explicitly that subjects can also

be objects and vice versa, because that fact follows automati-

cally from our identification of subjects with functicns and

objects with data.
3 (Ham76a] uses the term "function" in a more highly restricted sense and the
term "operation" in the sense of our "function." For our present purpcses,
the distinction is unimportant, and we will use the two terns interchangeably.
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Again in accordance with the fundamental dichotomy, although

data and functions are distinct components of systems, they

are at the same time inseparable from each other,because

each is characterized formally in terms of the other. A

function consists of an input data type, called its domain,

an output data type, called its range, and a correspondence,

called its mapping, between the members of its domain and those of

its range; a function can be characterized, therefore, as an

ordered triple (Domain, Range, Mapping), where the components

are as we have just stated. A data type consists of a set

of objects, called its members, and a set of functions, called

its primitive operations, which are specified by giving their

domains and ranges, at least one of which for each primitive

operation must include the data type's own set of members, and

a description of the way their mappings interact with one

another and, perhaps, with those of other functions; a data

type can thus also be characterized as an ordered triple, this

time (Set, DR, Axioms), where Set is the set of its members,

DR is a statement of the domains and ranges of its primitive

operations, and Axioms is a description of the interactive

behavior of the mappings of the primitive operations.

An example of an HOS data-type specification, namely,type

STACK, is given in Figure 8, written in the HOS specification

language AXES (Ham76a]. It is not difficult to see that this

specification avoids all of the problems that we discussed

in connection with Parnas' stack module in Figure 7. The

specification in Figure 8 has absolutely nothing to do, b

itself, with system decomposition. It is a definition of

a kind of object, plain and simple, and thus serves exactly

the kind of purpose it is suited to serve, rather than trying

to overextend itself, as Parnas' module does. Furthermore,

it is entirely self-contained, because the primitive operations

are characterized in terms of each other, rather than being

left dangling in the "module" to be rescued by abstract
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DATA TYPE: STACK;

PRIMITIVE OPERATIONS:

stack1  Push(stack, integer1

stack1 ='Pop(stack 2 );

integer1  Top(stack1)

AXIOMS:

WHERE Newstack IS A CONSTANT STACK;

WHERE s IS A STACK;

WHERE i IS AN INTEGER:

Top(Newstack) = REJECT; V

Top(Push(s,i)) = i

Pop(Newstack) = REJECT;

Pop(Push(s,i)) = s;

END STACK;

Figure 8

HOS/AXES Data Type Stack
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programs. Finally, it is absolutely implementation-free,

because any implementation, whether made up of vacuum tubes,

transistors, integrated circuits, magnetic bubbles, or ice-

cream cones, will be a satisfactory implementation, as long

as primitive operations can be defined in the implementation

that behave in accordance with the axioms.

An interesting thing happens when we try to specify Walter's

M0 in terms of HOS data types. The first thing we notice

about M0 is that repositories are more basic than agents.

An agent, in Walter's terms, is anything that can observe or

modify a repository, while a repository is anything at all

that can be partially ordered. Walter says that "associated

with each repository is a security class which measures the

relative sensitivity of the information stored within it."

Since the only real function of the security class is to

measure "relative sensitivity," it follows that their func-

tion could be accomplished just as well by partially order-

ing the repositories themselves. This enables us first to

characterize the class of repositories as a data type inde-

pendently of the class of agents and then to characterize

the class of agents as a data type in terms of the data

type REPOSITORY. It also enables us to eliminate the class

of security classes altogether from our model by imposing

our partial ordering directly on the data type REPOSITORY

and assigning each agent a maximal repository it can observe

and a minimal repository it can modify. This confirms our

earlier observation that Walter is conflating levels of

generality in his model. Security classes can be introduced

as a data type at a lower level of generality, if they are

really needed for a particular problem, or if they are simply

desired for reasons of convenience or elegance, but they have

no place on the highest level of generality of a general

systems theory.
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t Figure 9 gives the HOS specification of data type REPOSITORY,

written, as usual, in AXES.. As just noted, the only primitive

operation we need in this data type specification is the

partial ordering Atmost, whose axioms are available with AXES

and thus do not need to be stated explicitly.
4

DATA TYPE: REPOSITORY;

PRIMITIVE OPERATIONS:

boolean = Atmost(repositoryI , repository 2)

AXIOMS:

END REPOSITORY;

Fiqure 9

HOS specification of data type REPOSITORY

Note that whereas Walter treats his partial ordering as a

general relation, i.e., as a general subset of C x C, or equi-

valently, a general set of ordered pairs (C 1,C2), we treat

it as a function, i.e., a subset of REPOSITORY x REPOSITORY

x BOOLEAN in which the first two components of each
(RIR 21b) uniauely determine the third. The possibility

of treating any relation as a function that maps into BOOLEAN

is a general property of relations which HOS takes full ad-

vantage of. It enables us to integrate the treatment of re-

lations that might not normally be viewed as functions into

the general functional-decomposition framework of HOS and thus

to see how such "non-functional" relations fit into the system

as a whole of which they are a part.

4Equality is also needed, but this is provided in AXES itself
for every data type. Atmost is not a universal operation,
as Equality is, but is universally available, in that we can in-
clude it in any data type specification with whose axioms its
own axioms are consistent. The axioms of Atmost are stated once
and for all in AXES and thus need not be restated every time
the operation is included among those of a particular data type.
Once Atmost is included among the primitive operations of a
particular data type, its axioms are automatically those that

are stated for it in the theory. See [Cus77a] for discussion
of these ideas.
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Figure 10 gives the AXES specification for data type AGENT 5 . As noted earlier,

there is one primitive operation, Observeclearance, that assigns to each agent

a maximal repository it can observe and a second primitive operation, Modify-

clearance, that assigns to each agent a minimal repository it can modify.

The remaining two operations, Observes and Modifies, correspond to Walter's

6 ("observe") and p ("modify") relations, respectively, in the way discussed

in the preceding paragraph.

DATA TYPE: AGENT;
PRIMITIVE OPERATIONS:

repository = Observeclearance(agent);
repository = Modifyclearance(agent);
boolean = Observes(agent,repository);
boolean = Modifies(agent,repository);

AXIOMS:
WHERE a IS AN AGENT
WHERE r IS A REPOSITORY

(Observes(a,r) D Atmost(r,Observeclearance(a)) = True;
(Modifies(a,r) D Atmost(Modifyclearance(a),r)) = True;
Atmost(Observeclearance(a), Modifyclearance(a)) = True;

END AGENT;

Figure 10. HOS Specification of Data Type AGENT

The three axioms of data type AGENT together provide the effect of Walter's

Axioms 3 and 4, without the use of "security classes." The first axiom says

that if an agent can observe a repository, then that repository must be lower

(but not necessarily strictly lower) in the partial ordering of repositories

than the maximal repository the agent can observe. The axiom functions, in

other words, as a mutual definition of "can observe" and "maximal observable

repository" in terms of each other and the partial ordering, in the usual man-

ner of HOS data-type axioms. The second axiom says that if an agent can

modify a repository, then that repository must be higher (though perhaps not

strictly higher) in the partial ordering of repositories than the minimal re-

pository that the agent can modify. This functions, again, as a mutual defini-

tion of "can modify" and "minimal modifiable repository" in terms of each

other and the partial ordering.

Given the first two axioms, the third axiom provides all of the effect of

Walter's "security classes" by guaranteeing that the maximal observable

5The symbol "D" is a traditional infix symbol for material implication
in formal logic and is used here in place of the AXES prefix operation
symbol "Entails" (Ham76a]. It seems reasonable to use such traditional
infix symbols as abbreviations for AXES prefix symbols, whenever this is

convenient, and this convention is adopted explicitiy in [Ham76a] and [Cus77a].
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repository is always lower in the partial ordering than the minimal

modifiable repository. This means that, for a given agent, the

lattice of repositories can be divided into an "upper half" and a

"lower half," such that the agent can observe only repositories in

the lower half and modify only repositories in the upper half.

This, however, is really the only purpose that security classes

serve in M0, so we really can dispense with them entirely, as we

have done.

In Walter's terminology, we have reduced his 8-tuple

(R, A, C, 6, Ii, 4, Cls, Clr)

to a 7-tuple

(REPOSITORY, Atmost, AGENT, Observes, Modifies,
Observeclearance, Modifyclearance)

by showing that one of his data types is superfluous and that

his primitive operations that map into that type can be re-

placed by different primitive operations which have the same

effect but which have only the two remaining data types as

domains and ranges. Whereas Walter's 8-tuple requires two

special axioms, besides those for the partial ordering, which

are intrinsic to AXES, but which Walter has to state, making

a real total of five axioms for him, our 7-tuple requires

only three explicitly stated axioms, as shown in Figure 5.

It should be noted that if we had tried to specify explicitly

all three data types that Walter proposes, we would immediately

have run into problems. Walter names his data types and de-

scribes how his operations (functions/relations) are supposed

to work, but he does not explicitly specify either the opera-

tions or the types. His Axioms 3 and 4, for example, really

express relationships between types, rather than defining

characteristics of the individual types themselves. From

the HOS point of view, this amounts to putting the cart be-

fore the horse, stating a relationship between two things

before we have any idea at all what it is that is beinc related.

* From Walter's point of view, of course, this is zerfectly leci-

timate, because, presumably, he views the situ=tc.. ac beina
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analogous to that of point and lines in plane geometry, which

also are usually charactrized not independently as data types,

but in terms of each other. The advantage of our point of

view is its complete generality. Identifying being things

and doing things with data (types) and functions, respectively,

enables us to specify any system at all in a principled way,

without introducing any further kinds of entities. Walter's

formulation of this distinction in terms of a mutual defini-

tion of repositories and agents, in contrast, still requires

him to use functions (and relations, for that matter) to de-

fine his repositories and agents. In our framework, reposi-

tories and agents are data and functions, respectively, and

that is the end of that.

We could have defined a type "SECURITY CLASS" in terms of the

partial ordering, for example, but then we would have been

unable to write axioms on the data types AGENT and REPOSITORY

for the "primitive operations" CLS and CLR that map these

types into that type, without introducing a host of other
"primitive operations." Similarly, there would have been

no non-arbitrary way to decide whether 6 and p, which take

both agents and repositories as input, should be "primitive

operations" on AGENT or on REPOSITORY. By recognizing that

the only function of "SECURITY CLASS" in M 0 is to provide

an appropriate partial ordering for REPOSITORY, we can see

that REPOSITORY is a more basic data type than AGENT and

define the partial ordering directly on REPOSITORY, as

we did. In other words, REPOSITORY is "SECURITY CLASS" at

the level of generality at which M0 is defined. Whether

we call that single type "REPOSITORY" or "SECURITY CLASS"

is, of course, entirely a matter of choice.

The other important function that Parnas tries to make his

modules serve, i.e., system decomposition, is specified in

HOS in terms of decomposition trees, also called control

maps. Given a system that involves certain data types, the

function the system performs can be decomposed into a tree

structure whose nodes are functions and whose terminal nodes,

in particular, are primitive operations of the data types,
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where the collective effect of the functions at the terminal

nodes is the same as that of the system as a whole. Such

tree structures are not intended to provide definitions of

kinds of objects, as Parnas' modules are, but represent system

decompositions into subsystems, plain and simple. An example
a+bof such a decomposition tree, for the function y = --7, is

shown in Figure 11. The domain and range of the decomposed

function can be determined by the typed variables that re-

present inputs and outputs and by the primitive operations that

appear at the terminal nodes. The tree itself is precisely

what gives the mapping of the decomposed function, by showing

how that mapping gets accomplished in terms of the collective

behavior of the ihdependently characterized primitive operations.

The key to the usefulness of these decomposition trees lies

in the six HOS axioms listed in Figure 12. It is these axioms,

in fact, and their consequences, of course, that make HOS HOS.

While HOS can specify any system that can be specified, the

specification must be in accordance with these axioms or the

system may be incomplete or unreliable. Any software system,

in particular, that is specified in accordance with these axioms

is automatically guaranteed to be reliable, in the sense that

no data or timing conflicts can ever occur [Ham76b]. Formally,

the axioms tell us that a well-formed HOS tree is always equiva-

lent to a tree in which every node is occupied by one of the

three primitive control structures, shown in Figure 13. Abstract

control structures, defined in terms of the primitives may

also appear in well-formed trees, and, conversely, any control

structure, i.e., configuration of parent and offspring nodes,

can appear in a well-formed tree as long as it can itself be

decomposed into the primitives.

Such an HOS tree can be interpreted either as decomposing a

function into primitive operations or as building up a func-

tion out of primitive operations. Which interpretation we
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y =f(a,b,c,d)

1l Smab Difference(c,d)

Figure 11

HOS Tree for Function y a c-
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DEFINITION: Invocation providqs for the ability to perform a function.

AXIOM 1; A given module controls the invocation of the set of
functions on its immediate, and only its immediate

* lower level.

DEFINITION: Responsibility. provides for the ability of a module to
produce correct output values.

* AXIOM 2: A given module controls the responsibility for elements
of its own and only its own output space.

DEFINITION: An output access right provides for the ability to locate a
variable, and once it is located, the ability to give a value to
the located variable.

AXIOM 3: A given module controls the output access rights to each
set of variables whose values define the elements of the
output space for each immediate, and only each immediate
lower-level function.

DEFINITION: An input access right provides for the ability to locate
a variable, and once it is located, the ability to reference the
value of that variable.

AXIOM4 4: A given module controls the input access rights to each
set of variables whose values define the elements of the
input space for each immediate, and only each immediate
lower-level function.

DEFINITION: Rejection provides for the ability to recognize an improper
input element in that, if a given input element is not acceptable,
null output is produced.

AXIOM 5: A given module controls the rejection of invalid elements

of its own, and only its own, input set.

DEFINITION: Ordering provides for the ability to establish a relation
in a set of functions so that any two function elements are comn-
parable in that one of the said elenents precedes the other said
element.

AXIOM 6: A given module controls the ordering of each tree for
its immediate, and only its immediate, lower level.

Figure 12

The Axioms of HOS
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y f f(x)

y =f() t f x

COMPOS IT ION

y f (x)

P (x) ~P(x)

y f f(x) y f f2(x)

SET PARTITION

(y1 'y 2) f f(XI x2 )

y f f(x 1  "2 f f2(x 2)

CLASS PARTITION

Figure 13

The Three Primitive Control Structures of HOS
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choose for a particular tree depends, as usual, on the use we

want to make of it. Under either interpretation of such a

tree, however, what we end up with is a specification of the

function at its root node that is genuinely non-procedural,
i.e., non-algorithmic, and entirely free of implementation

considerations. The tree provides a complete and explicit

account of what functional mapping the function performs

and how that mapping is collectively carried out on the types

involved by their primitive operations. Everything is clearly

spelled out in terms of the hierarchical organization of

functional mappings, and this --no more, no less-- is exactly

what we require of an adequate specification methodology.

The need for abstract programs, i.e., (procedural) sequences

of abstract calls to the primitive operations of abstract

machines, is entirely eliminated. It follows that replacing

each of Robinson's P.'s with an HOS tree will make the pro-1

blems we found in connection with his "abstract programs"

disappear.

It is worth noting, at this point, that HOS does not distin-

guish at all between O-functions and V-functions, because,

however important this distinction may be in particular im-

plementations, it simply-does not exist from the point of

view of specification, i.e., on the highest level of general-

ity. Functions are things that do, as opposed to be.

Sorting out different kinds of functions is something we can

do at lower levels of generality, but has no place as a re-

quirement of the theory itself.

To illustrate this point again, suppose we have a register

whose positions are filled with integers, as in the example

of Figure 6 (a stack or queue would do just as well for our

purposes; c.f. Figure 8 for data type stack and [Cus77] for

data type priority queue, for example). Obviously, there

is a big difference between an implemented register and the

integers it contains, and thus between changing the state of
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the register and taking one of those integers as a value.

From the point of view of specification, however, a register

is every bit as much of an abstraction as an integer. The

two abstractions differ, moreover, only in the interactive

behavior of the primitive operations that are used to char-

acterize their data types, as this behavior is specified in

the axioms of the respective type. From the point of view of

specification, therefore, changing the state of an implemented

register amounts simply to producing a new abstract register

as a value. If we take a register and remove its last element,

for example, we get a new register that is identical to the

original register except that it lacks the original register's

last element. This may not be what happens in implementation,

but it is the logic of the situation, and that is what speci-
6

fication is really all about

As we observed earlier, Robinson supplements his "abstract

machines" with "abstract programs"~ in order to do fully the

two jobs that Parnas wants his modules to do. Robinson's

"abstract programs" tell us what the functions really are that

are intended to be characterized in the modules.

Robinson's intention can be successfully achieved by replacing

each component of his framework with a corresponding component

of HOS. Since his "abstract programs" serve as the characteri-

zations of functions, we replace each of them with a decomposi-

tion tree. This relieves his "abstract machine" modules

of the burden of serving as the units of system decomposition

and leaves them free to serve as definitions of kinds of ob-

jects, which is what they would prefer to do anyway, as we

have seen. We thus replace each of the "abstract machines"

with a set of data-type specifications of HOS.

6Note that this is just another way of looking at what we said
about queues in the second paragraph of this section.
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Formally, then, we replace'each of Robinson's ordered (P,M)

pairs with an ordered pair (D,T), where D is a set of data

types replacing the "abstract machine" M and T is a set of de-

composition trees replacing the set of "abstract programs" P.

Robinson's levels of abstraction gets replaced with a data level

of HOS. For simplicity, we will assume that the data levels

are linearly ordered, in order to preserve the analogy that

we are developing with Robinson"s account of the SRI method-

ology, but, in fact, only a partial ordering is really neces-

sary, as long as there is a maximal data level in the ordering

that contains only one tree.

Higher data levels are related to lower data levels in that

the composition trees of each data level decompose the

primitive operations of the next higher data level in terms

of the primitive operations of the lower data level . For every

primitive operation f of a member of Di+ 1 (i>O), in other words,

there will be a decomposition tree in T. whose root is f and1

whose leaf nodes are primitive operations of a member of Di.

The primitive operations of the lowest-data level data types D0
are the primitive operations of the system, because these are

not decomposed at all, but are characterized only in terms

of their axiomatic interaction. The D. thus play the role1

of Robinson's M. and the T. play the role of his P , as wel l 1

said we want them to do, but avoiding any suggestion of

implementation.

The simplest case, in which each Di contains a sincle data type

and in which T contains only one decomposed function f, corres-n
ponding to Robinson's single program P, is illustrated in

Figure 14 which clearly reveals the parallel between the HOS

7We are restricting our discussion of HOS here somewhat, in
order to maintain as close an analogy as possible with Robinson's
framework. Later we will expand our account by discussina HOS
in fuller generality.
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framework we have developed here and the SRI framework illus-

trated in Figure 5.. The direction of the arrows in Figure 14

denotes flow of decomposition, however, rather than flow of

implementation, as is the case in Figure 5. Everything in

Figure 14 is strictly in the realm of specification and every

subspecifi-ation ("module"), i.e., data types, trees, and

data levels, is genuinely self-contained.

It is worth noticing at this point that Figure 14 suggests

a way in which a relatively simple proof-of-correctness pro-

cedure might be developed for software specified in HOS.

Robinson gives the following general account of how a proof-

of-correctness procedure is supposed to work:

The goal is to prove the correctness of a program P
with respect to an input assertion, 4, and an out-
put assertion, ip. Verification requires the inser-
tion of inductive assertions {g, }into the prograr's

flowchart, breaking the program into simple paths.
Each simple path has one entry and one exit and
between these a fixed number of executable statements.
For each simple path, a formula called a verification
condition (VC) must be stated and proved to be a
theorem. The validity of all the VCs for a program
is sufficient to demonstrate the partial correctness
of a program--i.e. for all inputs satisfying the input
assertion, the output assertion is satisfied if the
program terminates. Termination can be proved by,
inductive assertions (usually different from those
used to prove partial correctness) that bound the
number of loop executions... (p. 274).

If we view Robinson's description in terms of Figure 14,

we get the following general picture. What we need in proof-

of-correctness is a set of intermediate points in the speci-

fication of a function, at which correctness assertions (verifi-

cation conditions) are stated and can be proven. In Ficure 14,

such intermediate points appear to be provided automatically

at each data level, where the axioms on data types car be viewed

as assertions on the decompositions of hiqher-data Ie-el ritve
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operations into lower-data level primitive c:erations. The

input assertions :: are provided by a statement of what, in

general, we intended the specified functicn -o do. Spelling

out this procedure in detail will require further work, but

the general idea would seem to be clear.
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5. HIGHER ORDER SOFTWARE IS SECURE SOFTWARE

Now we are in a position to return to our main topic of security.

Given the parallels that we have developed between the SRI
"specification" methodology and HOS, it would undoubtedly be

useful to examine the SRI security model in view of these

parallels and see whether we can shed any light on how that

model can be tightened up, as we did for Walter's. There is

good reason for not doing this, however. The SRI notion of

security is very similar to Walter's, as we can see from the

following description of that notion by Feiertag:

In a multilevel secure system there is a predefined
set of security levels. The security levels are com-
posed of clearances (or classifications) and category
sets, but the composition of tne security levels is
an unimportant detail for purposes of this discussion
and will be largely ignored8 . What is important is
that the security levels are partially ordered by the
relation "less than" represented by "<". Each pro-
cess in a multilevel secure system is assigned a
security level. The processes may invoke functions
that change the state of the system and return values.
Each function instantiation (i.e., a function with a
particular set of argument values) is assigned a
security level. A process may only invoke those
instantiations of functions that have been assigned
the security level 6f the process. A system is
multilevel secure if and only if the behavior of a
process at some given security level can be affected
only by processes at a security level less than or
equal to the given level. Stated in terms of func-
tions, this says that the values returned by a
function instantiation assigned some security level
can be affected only by the invocation of function
instantiations at lower or equal security levels.
Stated in loose terms this means that information
can flow only upward in the system from processes
of lower security level to processes of higher security
level. [Fei76, p. 1).

We already have enough at our disposal, however, tc solve the

security problem altogether, without tryina to reexamine

Feiertag's model in light of HOS. Doing the latter can thus

be left simply as an interesting exercise for the reader.

8Like Feiertag, Walter also informally characterizes a "classification" as

consisting of a "sensitivity level" ZIndL "co::partment," but, also like

Feiertag, this distinction plays no real role in his formal sec-urity model.
-ote that livrc. too, ai secture model c1r)ctcr z us ,he in .hic", infor-

P!;.tion can flow only upward.
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We arrived at our HOS model in Figure 14 by sticking fairly

closely to Robinson's SRI model, as illustrated in Figure 5,

and showing that eac> component of his model could be made

completely free of imnlementation by replacing it with the

corresponding HOS notion. What we found, essentially, was

that the step from implementation to specification can indeed

be made in somewhat the way Robinson wants, but only if we

reformulate his notions in non-implementation terms. To

capture successfully what Robinson is trying to express,

we have to replace his "abstract machines" with HOS data-type

specifications and his "abstract programs" with HOS function-

decomposition trees.

In fact, however, HOS is considerably more general than the

model in Figure14. In particular, there is no reason for the

relationship between the primitive operations of successive

data levels to be related as directly as Figure 14 suggests.

In the figure, the primitive operations of one data level are

decomposed directly into the primitive operations of the next

lower data level. In general, however, there can be inter-

mediate operations on the lower data level that mediate this

decomposition.

As we noted earlier, a data level of HOS is an ordered pair

(D,T), where D is a set of abstract data types and T is a set

of decomposition trees. We also said the data levels are

linearly (or partially) ordered and that they are related in that

the decomposition trees of each data level decompose the

primitive operations of the next higher data level in terms of

the primitive operations of the lower data level. In the most

general case, however, the decomposition trees on one data

level also use the primitive operations of that data level at

their terminal nodes to define operations that do not appear

as primitive operations of the next higher data level. In

this case, there will be further decomposition trees between

the data levels whose roots are primitive operations of higher
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data levels and whose leaves are primitive or non-primitive

operations of next-lower data levels.

To put the point a little differently, a data level of HOS,

from the most abstract point of view, is nothing more than

an ordered pair (D,T), where D is a collection of sets and

T is a collection of mappings (mathematical functions).

What makes such an ordered pair an HOS data level, is the kinds

of constraints that are imposed on D and T by the HOS axioms

(and their consequences). Every member of D is not only a

set, but a set whose members behave towards each other in a

way specified in an HOS data-type specification. Every mem-

ber of T is not only a mapping, but a mapping that is decom-

posed in a well-formed HOS tree.

The mappings in T can represent completely general functions

and do not have to be primitive operations on either their

own or any other data level. If a mapping f is non-primitive

on its own data level, then there is a decomposition tree that

connects it to the primitive operations of that data level.

Such a tree can be said to be horizontal, because it relates

primitive and non-primitive operations on a single data level.

There is also, however, a vertical tree that relates f to the

primitive operations of the next higher data level. In this

tree f is one of the leaves and the root is one of the primi-

tive operations of the higher data level.

What we get instead of the arrows in Figure 14, in other words,

is a retroflex step structure like the one in Figure 15.

Each line segment in Figure 15 represents a set of decomposi-

tion trees, some of which are horizontal (on a data level)

and some of which are vertical (between two data levels).

The arrows point away from the root nodes and toward the leaf

nodes of the trees they represent. Filled circles represent

primitive operations of a data level, while filled squares
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} = trees within a data level
LL.o = trees between data levels

* = non-primitive operations
w of a data level

0• = primitive operations
of a data level

Arrow direction between
-- nodes indicates flow of
a- decomposition, away from

sroot nodes and toward
leaf nodes of decomposi-
t<ion trees.

C-,

Figure 15

Retroflexed Step Structure of HOS Data Levels
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denote non-primitive operations of a data level. Movement

away from f produces increasingly decomposed operations (func-

tions, mappings, 4tc.), i.e., an increasing degree of primi-

tivity of the operations/functions involved. Movement towards

f produces increasingly abstract or complex (decomposable)

operations/functions, culminating in f itself.

In Figure 16 , we elaborate this structure somewhat for a sys-

tem with three data levels. As in Figure 15, filled circles

in Figure 11 denote the primitive operations of a data level,

while filled squares denote non-primitive operations of a

data level. Open circles denote non-primitive operations that
9

are needed in the intermediate levels of a decomposition tree.

These are described in terms of the three primitive control

structures of HOS (composition, set partition, and class parti-

tion,as illustrated in Figure 13) or in terms of abstract

control structures that are definable in terms of the three

primitive control structures, as we mentioned in Section 4.

Trees with solid branches are horizontal trees, which decom-

pose non-primitive operations of a data level in terms of

primitive operations of the same data level. Trees with

dashed branches are vertical trees which decompose primitive

operations of a data level in terms of non-primitive opera-

tions of the next lower data level. Note that primitivity of

operations is a relative notion, defined with respect to the

data level an operation is defined on.

New we are ready to solve the security problem. Clearly, if

we are not interested, for some reason, in the data-level

structure of a particular f that has been decomposed as in

Figures 15 and 16 , then we can "fix" f in space, as it were,

and "pull the rug out" from under the lowest data level, so

that the filled nodes in the diagram act as pivots and the

entire system stretches out into one gigantic tree structure,

as in Figure 17. In conjunction with the HOS axioms, however,
9Note that HOS levels are defined relative to a ccntroller,
or parent module, whereas Robinson's are not. See [Ham76a,b,c1.
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f Primitive Operations
of Data Level 2

Prn-mititve Operations
~of Data Level 1

I

- 11

Primitive Operations
of Data Level 0

Prrimitive Operations

No-rmiieOertosof the System)

~of Data Level 

Figure 16
HOS Decomposition of Function f with Three Data Levels
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Primitive Operations
of Data Level 2

Non-Primitive Operations
of Data Level I

Primitive Operations
/ of Data Level 1

Non-Primitive Operations
of Data Level 0

Primitive Operations of
Data Level 0 (and of the
system)

Figure 17

De-Retroflexed HOS Decomposition of Function f
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this fact automatically provides us with the solution to the

security problem.

Consider Axioms 3 and 4, in particular (F'; a-re12) . These are

the axioms that specify the access rights i- an HOS system and

would thus be expected to have something to do with security.

Axiom 3 states that the access riohts tc the outout of a func-

tion in a tree like that of Figure 17 are ccntrolled by, and

only by, its parent node ("module", in the axiom), i.e., the

node immediately above it. Axiom 4, sirilarly, states that the

access rights to the input of a function in such a tree is

also controlled by and onlZ by, its parent node. A given func-

tion can look at data only if its parent allows it to, and

it must dispose of its results, again, only as its parent allows

it to. It follows that the flow of control in an HOS system

is always from the top down.

The flow of information, however, is always from the bottom up.

A given node performs its function by having its offspring

nodes, i.e., those on the immediately lower level, perform

the function for it. This, in fact, is precisely what de-

composition is really all about. Decomposing a function is

just a formalized version of delegating responsibility.

If someone can perform a task all by himself, then there is

no point in delegating that task to subordinates. If respon-

sibility is delegated, then he performs his task precisely by

guaranteeing (via control) that his subordinates perform theirs.

Formally, the offspring nodes look at the data that the parent

allows them to (Axiom 4), perform their functions on that data

as input, and then dispose of that data as the parent requires

(Axiom 3), i.e., either by reporting it directly to the parent

or by passing it on to an appropriate sibling. In particular,

a given function has no idea what higher-level functions are

doing. It just chugs along, turning input into output, dis-

posing of that output as its parent tells it to. It is aware

of what its offspring (or perhaps, siblings) are doing, however,

5H
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because that is precisely where it gets its input from in

the firsL place.

The distinction between variables and values becomes very im-

portant here. Control is defined in terms of variables, but

information is defined in terms of values. A node controls

the access rights of its offspring to variables. The node

tells the offspring what variables they can look at and what

variables they must report back about. The offspring thus

get their variables from the parent. This is the sense in

which control flows downward. The parent node has no idea

what the values of those variables are, however, until it gets

those values from its offspring. The parent tells an offspring

what variable to look at; then the offspring looks at the vari-

able to find its value, operates on that value as input to

change it into a value of an output variable, and then reports

that value (either to a sibling or) back to the parent. Thus,

while parents tell offspring what variables they can look at

and assign, it is the offspring that tell the parents what the

values of those variables are. It follows that information

can flow only upward, precisely, in fact, because control

flows downward, as stated in Axioms 3 and 4.

Our proof that information flows only upward in an HOS system

required us to use the de-retroflexed tree in Figure 17, be-

cause the HOS axioms are stated in terms of trees (control

maps), not in terms of retroflex trees, like the data-leveled

structure in Figure 16. Since Figure 11 is functionally equiva-

lent, however, to Figure 17, differing, in fact, only in its

arrangement on the page, our proof of upward inforitation flow

is also valid for Figure 16.

The significance of this result cannot be overemphasized.

As we saw in connection with Walter's M0, a secure system is

one in which the repositories (data) and agents (functions)

are ordered in such a way, and the access rights of the agents
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(functions) to the repositories (data) are assigned in such a

way, that information can flow only upward in the ordering. What

we have shown here, however, is that, if a system is specified

in accordance with HOS, then its functions (agents) and data

(repositories) are so ordered, and the access rights of the func-

tions (agents) to the data (repositories) are so assigned, that

information does always flow upward in the ordering. In other

words, systems specified in HOS are automatically secure, without

the need for any further paraphernalia to guarantee the security

for us.

It follows that we have completely solved the security problem.

If software is specified in HOS, then it is secure. It is

that simple. Our proof of this fact also enables us to re-

fine our discussion of HOS somewhat, and it would be worth

while to pursue this opportunity a bit. We saw earlier that

systems have a dual character in two distinct senses. On

the one hand, a system is a function, since it performs a

function, and it is also a datum in that it exists at all.

On the other hand, a system consists of both data and func-

tions and these two components are inseparable. What our

proof of security makes clear, furthermore, is that each of

these components has a dual character as well, and again,

in two senses, when actually put together into a system.

A function in a system decomposition is a controller, because

it controls the behavior of its offspring, in accordance with

the axioms of HOS. It is also a performer, however, because

it carries out the mapping of its parent. Every function

plays both roles and the very fact that it plays one is the

reason it must also play the other.0 Data types also serve

in two capacities in system decompositions. Every data type

involved in a system decomposition provides both the input

of one function and the output of another. "In" and "out"

are as diametrically opposed as any two things can be, but,

lCrimitive operations are also controllers (potentially), because we can
always add a lower data level in which the) are decomposed. Similarly,
the highest-level function in a system is also a performer (potentially).
because we can always use a system as a subsystem of some other system.
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p
again, we cannot have one without the other.

Our components are also dual-natured in a second way. On

the one hand, data have a constant aspect, as individual ob-

jects that can serve as inputs or outputs of functions, but,

on the other hand, they have a variable aspect, because they

exist as the members of data types. A given datum is an in-

dividual object itself, but it is also a representative mem-

ber of a data type that can serve as a value of a variable

of that type. This dichotomy enables functions to play a

dual role in systems in a second sense as well.. In Walter's

terminology, a function can observe functions at a lower level

of its decomposition tree by receiving data values from output

variables of those functions and can modify functions at a

higher level of its decomposition tree by providing data values

to input variables of those functions.

On the one hand, therefore, functions act as acents, since

they can observe lower-level functions and modify higher-

level functions. What really gets observed and modified by

these agents are the output variables of the respective func-

tions with the modification occurring via the use of the input

variables, so it is the output variables that serve as the

repositories of the system. On the other hand, the input

variables also function as agents because it is they that

give the relevant values to their functions to use in modify-

ing the values of the output variables. In general, in other

words, it is the complete functions themselves--mappings, do-

mains, and ranges, with the latter two represented by variables--

that act both as agents and repositories in an HOS system.

It follows that we not only do not have to distinguish between

repositories and security classes, as we saw earlier, but we

do not really even have to distinguish between repositories

and agents either. Since a function all by itself already

HI
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has a dual character, being made up of a mapping and two data

types, functions themselves can play both roles. When func-

tions occur in a tree, they can observe and modify other func-

tions and they can also be observed and modified by other func-

tions. Since they occur in a tree structure in any system,

the functions themselves, and therefore the "agents" and "re-

positories," which the functions, are, are partially ordered,

(and thus also pre-ordered), just as Walter wants them to be.

A function in a system is both an agent and a repository

and, since it occurs in a tree structure, can also serve as

its own security class. This is about as cozy an arrangement

as we could possibly want and, as we have seen quite clearly,

it is absolutely secure.
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6. SOFTWARE, SYSTEMS, SEMANTICS, AND BEYOND...

In most real scientific breakthroughs, the applicability,

usefulness, and explanatory power of a new theory goes well

beyond the restricted kind of problem it was originally

intended to solve. All such developments clearly exhibit

the contradictory aspects of similarity and difference, of

continuity and change. Major breakthroughs always bear

strong similarities to existing theories, but differ from

them in key respects whose logical implications turn out to

make all the difference.

These sorts of characteristic are clearly evident in the case

of HOS as an approach to systems theory. We have seen that,

while HOS was originally developed for the specification of

reliable software, it turns out to provide automatically

the solution to the security problem as well. Many HOS concepts

look very much like the notions contained in other theories.

Very close examination reveals, however, that HOS differs

from other formulations in precisely the ways that are re-

quired by the problem the theories are trying to solve.

What results is a completely adequate methodology for the

specification of software systems that are reliable and

secure.

In fact, what results is much more than that. HOS seems

capable of providing insight into problems that are well

beyond its intended field of software engineering. There

is nothing in HOS, in other words, that requires us to

restrict its use to specifying software systems. As a

general systems theory, HOS can be fruitfully applied in any

field in which systems can be seen to be playing a role.

George Miller has suggested to us (personal communication)

that HOS control hierarchies might be useful in accountina

for the behavior induced by operant conditioning, and we

have ourselves been investigating its usefulness as a too!
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in analyzing natural languate. The HOS distinction between

data and functions, for exarnle, can be int.erpreted as pro-

viding a semantic model, in the sense of Wilson [Wil761,

[Mill76]. Wilson's own semantic model, illustrated in Figure 18,

is considerably less qeneral, recognizing seven modes of exist-

ence, which he calls "concept types": objects, properties,

relationships, events, actions, procedures, and sets. Such

a model would certainly be useful for many purposes, but its

limited generality cannot help but conceal significant generali-

zations that might help to simplify specific system specifi-

cations and suggest alternate implementations. Wilson's

model represents a number of possible implementations of

the HOS model at a lower level of generality. His "object

classes," "property classes," "relations/attributes," and

"sets," for example, could represent a particular selection

of data types, with "events," "actions," and "procedures"

corresponding to different classes of functions. The former,

after all, represent things that are (be), while the latter

represent things that do.

The data/function dichotomy could be distributed among Wilson's

seven "concept types" in other ways as well, but the question

that immediately strikes one on first coming across his model

is that of wh he chooses these seven in the first place. The

problem with Wilson's semantic model, in other words, as a general

systems (or semantic) theory, is that it is essentially ad hoc

and, therefore, of limited generality. Actions certainly

constitute events, for example, so they could be subsumed

under them. Reversing direction, we could elaborate actions

further, distinguishing them into transitive and intransitive

actions, perhaps. Properties, similarly, could be taken to

be one-place relationships, as they often are. The point is

that Wilson's theory provides no natural mechanism with which

to make the plethora of such decisions that might arise in

specific cases of system design. The number of "concept

types" is stipulated to be seven, in the theory itself, and

that is that. HOS, in contrast, distinguishes only between
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CONCEPT TYPES

Instances Classes (Abstracted from Instances)

objects object classes
properties property classes
relationships relations/attributes
events event classes
actions action classes
procedures procedure classes
sets set classes

CERTAIN KEv RELATIONSHIPS BETWEEN CONCEPTS

INSTANCE of/CLASS of

SUBCLASS of/SUPERCLASS of

COMPONENT of SUPERCOMPOSITE of (PART/WHOLE)

MEMBER of/SET MEMBERSHIP of

SUBSET of/SUPERSET of

Figure 18. Wilson's Semantic Model [Wil7E, p. 7]
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data and functions, while permitting any instance of either

to be also an instance of the other. Given this generality,

we can begin restricting things anyi.way we like for any parti-

cular Droblem: three special data types and four classes of

functions, two special data types and six classes of func-

tions, ten special data types and one class of functions, etc.

Once we let ourselves get more concrete than simply being

versus doing, in other words, there is no clear general

criterion for what our categories, modes of existence, or

concept types should be, because each application or class

of applications will favor a different choice. An adequate

general systems theory must be formulated at the highest level

of generality, so that no possibly desired choice of imple-

mentation will be ruled out, or made intrinsically more dif-

ficult, ahead of time.

By distinguishing only between data types and functions, in

other words, HOS lets each particular more or less concrete

application select exactly the specific data types and func-

tions it needs, rather than arbitrarily stopping the theory

short at a lower level of generality, and possibly ruling

out the optimal choice of data types and functions for a

particular application. The point here is not that Wilson's

semantic model is wrong, but that, unlike HOS, it is not

fully general, and, therefore, not fully adequate.

one final point remains to be made before we close. The

reason that system specification has been such a difficult

thing to figure out is that, as we have seen, a system is an.

intrinsically contradictory object'. On the one hand, a

system is a single object; on the other hand, it is made up

of many different objects. on the one hand, a system performs

a function on objects; on the other hand, it is an object on

which functions can be performed. On the one hand, a system

consists of two distinct kinds of objects, functions and data;

on the other hand, functions can be data and data can be

66

HIGHER ORDER SOFTW ARE, INC 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139 -(617) 661-8900



functions, so only one sort of thing is really involved.

A datum can be an input to- a function, but it can be so only

by being an output to a function, and vice versa. A function

controls other functions, but it also gets controlled by

another function. A datum is an individual object, with a

constant aspect, and also a representative of a data type, with

a variable aspect. Functions are defined in terms of vari-

ables, i.e., representatives of data types, but operate on

constants, i.e., individual data, and so on.

Given all these twists and turns on the road to specification,

0it is not surprising that so many have lost their way. The

uniqueness and power of HOS consists precisely in the fact

that it manages to resolve all of these contradictions in one

fell swoop and makes them comprehensible.
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